Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion.
نویسندگان
چکیده
Mitochondrial electron transport chain (ETC) is the major source of reactive oxygen species during myocardial ischemia-reperfusion (I/R) injury. Ischemic defect and reperfusion-induced injury to ETC are critical in the disease pathogenesis of postischemic heart. The properties of ETC were investigated in an isolated heart model of global I/R. Rat hearts were subjected to ischemia for 30 min followed by reperfusion for 1 h. Studies of mitochondrial function indicated a biphasic modulation of electron transfer activity (ETA) and ETC protein expression during I/R. Analysis of ETAs in the isolated mitochondria indicated that complexes I, II, III, and IV activities were diminished after 30 min of ischemia but increased upon restoration of flow. Immunoblotting analysis and ultrastructural analysis with transmission electron microscopy further revealed marked downregulation of ETC in the ischemic heart and then upregulation of ETC upon reperfusion. No significant difference in the mRNA expression level of ETC was detected between ischemic and postischemic hearts. However, reperfusion-induced ETC biosynthesis in myocardium can be inhibited by cycloheximide, indicating the involvement of translational control. Immunoblotting analysis of tissue homogenates revealed a similar profile in peroxisome proliferator-activated receptor-γ coactivator-1α expression, suggesting its essential role as an upstream regulator in controlling ETC biosynthesis during I/R. Significant impairment caused by ischemic and postischemic injury was observed in the complexes I- III. Analysis of NADH ferricyanide reductase activity indicated that injury of flavoprotein subcomplex accounts for 50% decline of intact complex I activity from ischemic heart. Taken together, our findings provide a new insight into the molecular mechanism of I/R-induced mitochondrial dysfunction.
منابع مشابه
Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion.
Mitochondria are increasingly recognized as lynchpins in the evolution of cardiac injury during ischemia and reperfusion. This review addresses the emerging concept that modulation of mitochondrial respiration during and immediately following an episode of ischemia can attenuate the extent of myocardial injury. The blockade of electron transport and the partial uncoupling of respiration are two...
متن کاملThe Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities
Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...
متن کاملMitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury
Mitochondria are critical modulators of cell function and are increasingly recognized as proximal sensors and effectors that ultimately determine the balance between cell survival and cell death. Volatile anesthetics (VA) are long known for their cardioprotective effects, as demonstrated by improved mitochondrial and cellular functions, and by reduced necrotic and apoptotic cell death during ca...
متن کاملPossible Role of Interaction between PPARα and Cyclophilin D in Cardioprotection of AMPK against In Vivo Ischemia-Reperfusion in Rats
Activated AMPK protects the heart from cardiac ischemia-reperfusion (IR) injury and is associated with inhibition of mitochondrial permeability transition pore (PTP) opening. On the other hand, pharmacological inhibition of the PTP reduces infarct size and improves cardiac function. However, it is unclear whether beneficial effects of AMPK are mediated through the PTP and, if they are not, whet...
متن کاملIschemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
Cardiac ischemia decreases complex III activity, cytochrome c content, and respiration through cytochrome oxidase in subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). The reversible blockade of electron transport with amobarbital during ischemia protects mitochondrial respiration and decreases myocardial injury during reperfusion. These findings support that mitochondrial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 302 7 شماره
صفحات -
تاریخ انتشار 2012